CO hydrogenation over a RhVO₄/SiO₂ catalyst after H₂ reduction

Shin-ichi Ito, Shintaro Ishiguro, Ken Nagashima and Kimio Kunimori*

Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

Received 11 August 1998; accepted 19 September 1998

The hydrogenation of CO over a $RhVO_4/SiO_2$ catalyst has been investigated after H_2 reduction at 773 K. A strong metal—oxide interaction (SMOI) induced by the decomposition of $RhVO_4$ in H_2 enhanced not only the selectivity to C_2 oxygenates but also the CO conversion drastically, compared with an unpromoted Rh/SiO_2 catalyst. The selectivity of the $RhVO_4/SiO_2$ catalyst was similar to those of conventional V_2O_5 -promoted Rh/SiO_2 catalysts (V_2O_5 - Rh/SiO_2), but the CO dissociation activity (and TOF) was much higher than for V_2O_5 - Rh/SiO_2 , and hence the yield of C_2 oxygenates was increased.

Keywords: CO hydrogenation, high activity, SMSI, SMOI, C2 oxygenates, RhVO4/SiO2

1. Introduction

Vanadia-promoted Rh catalysts have been reported to have a high activity and selectivity in the syngas (CO+H₂) conversion for the production of C₂ oxygenates such as ethanol and acetic acid [1,2]. In both vanadia-supported and vanadia-promoted systems, it is suggested that the Rh particles are partially covered by vanadium oxide after a high-temperature reduction (so-called SMSI: strong metalsupport interaction [3]) and that the role of the vanadium oxide promoter is to enhance the CO dissociation, which leads to a high activity, and/or the insertion of CO into the metal-carbon bond, which leads to the formation of C₂ oxygenates [1,2]. We have found a phenomenon of calcinationinduced metal-promoter interaction: a mixed oxide such as RhNbO₄, RhVO₄ and MnRh₂O₄ can be formed on a SiO₂ support by mutual interaction between Rh and the oxide (vanadia, etc.) during calcination treatment in O₂ or in air at high temperature (973-1173 K) [3,4]. For instance, RhVO₄ is decomposed to highly dispersed Rh metal and reduced vanadium oxide (VO_x) by H₂ reduction above 573 K, and a strong metal-oxide (Rh-VO_x) interaction (SMOI) is induced on SiO₂ [4,5] (see figure 1). This paper reports the catalytic features of the RhVO₄/SiO₂ system for the syngas conversion, and the results were compared with those of vanadia-promoted (V₂O₅-Rh/SiO₂) and unpromoted Rh/SiO2 catalysts.

2. Experimental

The SiO_2 support (JRC-SIO-7) was provided as Japan Reference Catalyst (JRC) [6]. The SiO_2 support, which had been precalcined in air at 1173 K (BET surface area 81 m²/g), was first impregnated with an aqueous solution of RhCl₃ (4 wt% Rh), then dried in air at 393 K

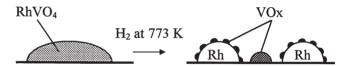


Figure 1. Decomposition of RhVO₄ on SiO₂ support.

overnight. V₂O₅-Rh/SiO₂ (1) and (2) catalysts were prepared by impregnating this sample with an aqueous solution of NH₄VO₃ (atomic ratio of V/Rh was 1 and 2, respectively), followed by calcination in air (at 1073 and 673 K, respectively) for 3 h. The RhVO₄/SiO₂ catalyst was prepared by calcination in air at 1073 K for 3 h after the impregnation with $NH_4VO_3(aq.)$ (V/Rh = 2). The unpromoted Rh/SiO₂ catalyst was also prepared by air calcination at 773 K. CO hydrogenation over the Rh catalysts after H₂ reduction at 773 K was carried out in a flow reactor system at atmospheric pressure using a 1:3 mixture of CO and H₂ (3 cm³/g-cat min). Analysis of the products was performed by an on-line gas chromatograph system equipped with a TCD detector. X-ray diffraction (XRD) measurements were carried out by an X-ray diffractometer equipped with a graphite monochromator for Cu K α (40 kV, 30 mA) radiation. The mean Rh particle size was calculated from the XRD line-broadening measurement using the Scherrer equation [4].

3. Results and discussion

As shown in table 1, RhVO₄ was formed on SiO₂ (JRC-SIO-7) for the Rh catalyst (V/Rh = 2) calcined at 1073 K. For the other catalysts, RhVO₄ was not confirmed, but Rh₂O₃ was observed for V₂O₅–Rh/SiO₂ (1). In general, an excess amount of V (V/Rh = 2 in this work) may be needed for the formation of RhVO₄. The excess V oxides may be highly dispersed and/or present as isolated VO_x species on the SiO₂ support, because no peak of V oxides was observed in the XRD measurement of the RhVO₄/SiO₂

^{*} To whom correspondence should be addressed.

Catalyst	Rh/SiO_2	V_2O_5 -Rh/SiO ₂ (1)	$V_2O_5-Rh/SiO_2\ (2)$	RhVO ₄ /SiO ₂
Atomic ratio V/Rh	0	1	2	2
Calcination temp. (K)	773	1073	673	1073
XRD peaks ^a	n.d.	Rh_2O_3	n.d.	$RhVO_4$
Rh particle size ^b (nm)	10.0	9.1	6.1	4.1
CO conversion (%)	3.3	7.6	8.3	33.6
$TOF^{c} (\times 10^{-4} \text{ s}^{-1})$	4.3	9.0	6.6	18.0
Selectivity ^d (%)				
CO_2	2.3	12.5	33.0	12.0
CH_4	46.9	21.6	3.5	32.8
C_{2+}^{e}	34.7	22.3	25.8	23.0
MeOH	4.8	5.4	0.8	4.7
C ₂ oxygenates ^f	11.3	38.2	36.9	27.5
Yield (%)				
C ₂ oxygenates ^f	0.4	2.9	3.1	9.2

Table 1 The results of CO hydrogenation at 473 K for the Rh catalysts reduced in H_2 at 773 K

catalyst with V/Rh = 2. Beutel et al. [7] also recently investigated the formation of RhVO₄ on a SiO₂ surface with V/Rh = 4, and observed the calcination-induced metalpromoter interaction, which is in good agreement with our previous results [4]. As shown in table 1, Rh was more highly dispersed (4.1 nm) after the decomposition of RhVO₄ by H₂ reduction at 773 K than the Rh (6.1– 10.0 nm) of the V₂O₅-Rh/SiO₂ and unpromoted Rh/SiO₂ catalysts. The order of the activity (CO conversion) after the H_2 reduction was as follows: RhVO₄/SiO₂ > V₂O₅- $Rh/SiO_2~(2)~>~V_2O_5-Rh/SiO_2~(1)~>~Rh/SiO_2.~$ The effect of vanadia promoter is clearly observed for the V₂O₅-Rh/SiO₂ catalysts (1) and (2), because the activity and the selectivity to C₂ oxygenates were increased significantly, compared with those of the unpromoted Rh/SiO₂ catalyst (table 1). However, the CO conversion of the RhVO₄/SiO₂ catalyst was much higher than those of the V₂O₅-Rh/SiO₂ catalysts. Although the same amount of vanadia promoter (V/Rh = 2) was used for the V_2O_5 -Rh/SiO₂ (2), the activity (CO conversion) of RhVO₄/SiO₂ was much higher than that of V_2O_5 -Rh/SiO₂ (2).

As shown in table 1, the TOF value of the RhVO₄/SiO₂ catalyst was also higher than those of the other catalysts. Therefore, the higher activity is not only due to the enhancement of Rh dispersion, but also to a strong metal–oxide (Rh–VO_x) interaction (SMOI), which is induced after the decomposition of RhVO₄ by the H₂ reduction. The selectivity to C₂ oxygenates of the RhVO₄/SiO₂ catalyst was a little lower than for the V₂O₅–Rh/SiO₂ catalysts (1) and (2) at 473 K because of a high conversion (33.6% in table 1). Because the selectivity also depends strongly on the CO conversion, the results are compared at different reaction temperatures at the condition of the same CO conversion (10%), as shown in table 2. The selectivity

Catalysta	Reaction temp.	C ₂ oxygenates ^b	
	(K)	Selectivity ^c (%)	Yield (%)
Rh/SiO ₂	501	17.0	1.7
V_2O_5 -Rh/SiO ₂ (1)	497	53.0	5.3
V_2O_5 -Rh/SiO ₂ (2)	488	30.0	3.0
RhVO ₄ /SiO ₂	453	60.0	6.0

^a See table 1.

for the RhVO₄/SiO₂ catalyst was much higher than that of the unpromoted Rh/SiO₂ catalyst, but similar to (or higher than) those of the other V₂O₅-promoted Rh/SiO₂ catalysts. These results suggest that the SMOI induced by the decomposition of RhVO₄ in H₂ enhanced not only the selectivity to C₂ oxygenates (compared with the unpromoted Rh/SiO₂ catalyst) but also the CO conversion dramatically (compared with the V₂O₅–Rh/SiO₂ catalysts). Although a Rh–VO_x interaction was also present in the V₂O₅–Rh/SiO₂ catalysts (1) and (2), more intimate contact between Rh and VO_x (i.e., SMOI) resulted from the reduction of the RhVO₄/SiO₂ catalyst. The SMOI increased the CO dissociation activity, and hence the yield of C₂ oxygenates was increased if compared at the same reaction temperature.

Acknowledgement

This work was partly supported by Iketani Science and Technology Foundation.

^a After the calcination treatment.

^b After H₂ reduction at 773 K.

^c Based on the Rh particles size from XRD.

^d Expressed as carbon efficiency (%).

e Amount of ethane, ethylene and C₃₊

f Amount of ethanol, acetic acid, acetaldehyde and ethylene glycol.

^b Amount of ethanol, acetic acid, acetaldehyde and ethylene glycol.

^c Expressed as carbon efficiency (%).

References

- B.J. Kip, P.A.T. Smeets, J. Van Grondelle and R. Prins, Appl. Catal. 33 (1987) 181.
- [2] G. van der Lee, A.G.T.M. Bastein and V. Ponec, J. Chem. Soc. Faraday Trans. I 83 (1987) 2103.
- [3] K. Kunimori, Z. Hu, T. Uchijima, K. Asakura, Y. Iwasawa and M. Soma, Catal. Today 8 (1990) 85.
- [4] Z. Hu, T. Wakasugi, A. Maeda, K. Kunimori and T. Uchijima, J. Catal. 127 (1991) 276.
- [5] K. Kunimori, K. Yuzaki, T. Yarimizu, M. Seino and S. Ito, Stud. Surf. Sci. Catal. 105 (1997) 2083.
- [6] Y. Murakami, in: Preparation of Catalyst III, eds. G. Poncelet, P. Grange and P.A. Jacobs (Elsevier, Amsterdam, 1983) p. 775.
- [7] T. Beutel, V. Siborov, B. Tesche and H. Knözinger, J. Catal. 167 (1997) 379.